Evolution of Water Consumption in the USA: A Network Approach

SK NASIR AHMAD
Rationale

• Water is one of the most vital element for human survival.
• Although, water covers approximately 70.9% of the earth’s surface, only 1.8% of total water is available for use.
• Of this limited quantity of usable water, less than 0.3% is found in lakes and rivers, which is known as surface water, and the rest is found in the form of groundwater and polar ice.
• The USA withdraw 80% of its total water withdrawal from surface water source.
• Therefore, tracking trends of water consumption is critical.

So, are we consuming more or less water now than we did 30 years ago?
Total Withdrawals by Category

- Thermo-electric power: 49%
- Irrigation: 31%
- Livestock: 1%
- Aquaculture: 2%
- Industrial: 4%
- Mining: 1%
- Domestic: 1%
- Public Supply: 11%
Public Supply

• Water withdrawn by public and private water suppliers that provide water to at least 25 people or have a minimum of 15 connections and is delivered to users for domestic, commercial, and industrial purposes, and also is used for public services and system losses.
Use of Statistical Indicators

• Traditional statistical indicators (e.g., mean and standard deviation) are commonly used to study and compare resource consumption trends in different regions.

• These indicators are also used to define and explain certain relevant properties, such as their distribution across cities, counties, states, nations.

• Additionally, these traditional indicators are most often used first-hand in models to predict the demand; e.g., how much water will we consume in 2030?

But!
Outliers

• In most datasets, some observations are distant from the general trends. These observations are known as outliers.
• Can be a real observation or may appear due to error.
• Most importantly, they can easily biased the outcome of the traditional analysis.
• It is difficult to detect them accurately.

Need: develop a new methodology to capture these outliers
For a graphical representation of the distribution, histograms are typically used.

To construct a histogram, the range of the distribution, which is the difference between the maxima and minima, is first divided into separate bins. Then, the number of observations for each bin is recorded.

Base of each histogram represents the bin width and the height represents the frequency for that particular bin.

Finding an appropriate bin width turns out to be a major and highly non-trivial challenge because selection of different bin width can easily provide different types of distributions.
Network Science

• The foundation of Graph Theory, the “father” of Network Science, was laid by Leonhard Euler in 1736

• Later, Paul Erdős and Alfréd Rényi developed probabilistic theory in Network Science in eight papers on random graphs.

• Much later in the late 1990s, Duncan Watts and Steven Strogatz described the small world problem mathematically.

• At the same time, Albert-László Barabási introduce scale free network.

• Since then early 2000s, network science has been applied to myriads of fields, and it can be relevant in our case as well.
Homophily

- A propensity for human being to link with similar others is known as homophily.

- Persons in homophilic relationships share common attributes such as beliefs, education, and social status.

- In this study, the concept of homophily is applied to counties that share similar water consumption properties.
Network

• A network or a graph G is a collection of vertices/nodes N joined by edges/links L; $G=\{N, L\}$.

• In network science distance refers to the least number of “hops” or nodes that must be visited to join any pair of nodes. It is also known as shortest path length.

• Average shortest path length is defined as the average of the shortest path lengths of that network.

• Largest of all these shortest path lengths is called the \textit{diameter} of a network, which is used to determine the range of the network.
Connectivity

• A popular measure in network theory is related to the concept of connectivity and one measure of connectivity is called density.

• Density basically calculates the number of links in a network divided by the total number of potential links in this network. The equation for undirected networks is,

\[\rho = \frac{2L}{N(N-1)} \]
Giant Cluster

• All nodes in a network do not have to belong to one single network and this is referred to a connected versus disconnected network.

• Some networks, as they grow, i.e., as they accumulate more links, start to have one sub-network that tends to absorb most of the links, which is known as the giant cluster.
Formal Methodology

• A node i is linked to node j when:

Where,

$$
\mu_i (1 - \xi) \leq \mu_j \leq \mu_i (1 + \xi)
$$

μ_i is the consumption of node i

μ_j is the consumption of j

and ξ is called the cutoff percentage.
Selection of Counties

- 3109 counties are selected for this analysis, which excludes Hawaii, Alaska and other territories (e.g., Puerto Rico)
Resulted Network

Year – 2005
\(\xi – 1\%
No of Nodes – 3109
No of Edges – 51764
Graph Density – 0.01
Network Properties

A

Proportional sizes of giant component

B

Average shortest path length

C

Degree

D

Density
Degrees vs. Consumption

A

B

C

D

Consumption in gpcd

Degree

Consumption in gpcd

Degree

Consumption in gpcd

Degree

Consumption in gpcd

Degree
Visualization

- A full JavaScript visualization is also presented on the Complex and Sustainable Urban Networks (CSUN) Lab’s website at http://csun.uic.edu.
Conclusion

• The main goal is to analyze the trend of water consumption in different regions.

• Traditional statistics, however, can fail to capture these current trends, and it was highlighted in this dissertation.

• Having these limitations in mind, a new approach is formulated based on network theory and already implemented to analyze the water consumption trend in the USA.

• Formalize this network approach and implement it to different dataset.
Thank you

Questions?